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Liquid Helium-4 in the Static Fluctuation
Approximation
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In this work liquid helium-4 is studied for the first time within the framework of the
so-calledstatic fluctuation approximationThis is based on the replacement of the
squareof the local-field operator with its mean value. A closed set of nonlinear integral
equations is derived for weakly as well as for strongly interacting systems. This set
is solved numerically by an iteration method for a realistic interhelium potential. The
thermodynamic properties are then obtained for both the weakly interacting system,
liquid *He in Vycor glass, and the strongly interacting system, licftkig. It turns

out, however, that the present quadratic-fluctuation approximation is valid in the latter,
strongly interacting case only in the low-temperature lirgi®(15 K). Our results are
presented in a set of figures. The role of the interaction is emphasized and the functional
dependence of key thermodynamic quantities on the temperature is derived for both
weakly and strongly interactirtHe systems.

1. INTRODUCTION

The extraordinary properties of superfldide (He I1) have challenged physi-
cists for more than two-thirds of a century (Galasiewicz, 1971; Ghassib and
Khudeir, 1986; Girish and Yia-Chung, 1998; Tilley and Tilley, 1974; Wilks, 1967).
Many theoretical techniques and formalisms have been applied to explain the ob-
served behaviour of the system, but a comprehensive microscopic theory is still
lacking.

In this paper we shall use a new approach, applied here for the first time
to many-bosonic systems, namely, the so-cadiadic fluctuation approximation
(SFA) (Nigmatullin and Toboev, 1989). This approach has recently been used to
study the classical two-dimensional Ising model (Nigmatutfiral, 2000a); the
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one-, two-, and three-dimensional Ising model (Nigmatudiiral, 2000b); and

the proton model of ferroelectrics with tunneling (Nigmatu#ial., 2000c). The

SFA attempts to rectify the difficulties plaguing conventional many-body theories,
exploring at the same time the extreme simplicity of the modified mean-field
approximation. The approach is relatively simple compared to other many-body
approaches: it is not based on Green’s functions or Feynman diagrams, and it
is applicable—at least in principle—to any arbitrary system (weakly or strongly
interacting).

The underlying key idea is to replace the square of the local-field operator
with its mean value. The physical implication is that the true quantum-mechanical
spectrum of this operator is replaced with a distribution around the expectation
value of the local-field operator (Nigmatullat al,, 2000a,b,c).

It will be seen that such an approximation is sufficient for calculating the
equilibrium correlation functions and the main thermodynamic characteristics of
the system considered. To this end, it is necessary to obtain the self-consistent
so-calledong-range equatioffior a wide range of interactions.

In this paper, we shall consider an extended systeh‘die atoms, each of
massm,occupying a volume. In a uniform infinite system, all physical properties
must be invariant under spatial translation. This translational invariance implies
that the single-particle wavefunctions are plane waves. The constituent bosons are
the elementary particles of the system, the energy required for an internal excitation
being much larger than the thermal energy.

The rest of the paper is arranged as follows. Section 2 summarizes the basic
principles and techniques of SFA. This is followed, in Section 3, by a full derivation
of the closed set of nonlinear integral equations involved. Next (Section 4) come
the calculations and numerics, then (Section 5) the results for both the weakly
interacting systenfHe in Vycor) and the strongly interacting system (ligiite).
Finally, some concluding remarks close the paper (Section 6).

2. BASIC PRINCIPLES AND TECHNIQUES OF SFA

For a specific Hamiltoniam, the Heisenberg representation of a creation
operatoi, (r) is given by

by (v) = exp(H)by (0) exp(-<H), (1)

wherer =it. The equation of motion of the creation operator in this representation
can be written in the form

db, N
# = [A, b ()] )

Herek is an index denoting the complete set of compatible quantum numbers
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describing a specific state. We shall assume that the Hamiltonian can be expressed
as

A =" iiby b, 3)
P

Wk () being the local-field operator assumed to be hermitian; it commutes with
creation and annihilation operators according to the well-known relations for a
Bose system:

Lbk, B;J = (Skq and LAbk+, Ab;J =0.
We can rewrite (2) as
db; (¢ A a ~ N
Pl _ 4,5/ (0)] = b (0. @
In the well-known mean-field approximation, the local-field operatg(r }
is replaced with its mean value:

Wi(t) = (Wi(r)) = (Wi (0)). (®)

Inthe SFA, we shall go further and assume thastiugareof the local-field operator
Wk () can be replaced with its mean value:

WE(r) = (WE(D)) = (#3(0)) = 2F. (6)

This is the single key assumption in this approximation. The implication is that
not only the mean value of the spectrum is taken into account (the mean-field
approximation), but also the fluctuations of the spectrum around the mean value
of the local-field operator. In other words, the true quantum-mechanical spectrum
of the local-field operator is replaced with a distribution around the expectation
value of the local-field operator (Nigmatullin and Toboev, 1989; Nigmatetie.,
2000a,b,c).

From approximation (6) it follows that the local-field operatq(?) is time-
independent:

wi(T)

Thereforewi(t) is a constant of motion; this is the origin of the qualifier “static”
in the SFA:

dw(r)
oo @)

[H, W] = 0. 8
From (4) we obtain

By (r) = by (0) expfir). ©)
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From this solution one can obtain all the necessary equilibrium correlation
functions. For this purpose it is sufficient to write the identity

(A(B)B) = (BA) = %Tr (exp(_BH)BA), (10)

where Q is the grand partition function of the system. Here and below we shall
replacer with g = kBiT ks being Boltzmann’s constant afidthe absolute tem-
perature; this is common in statistical quantum mechanics (Feynman, 1972).

Using the above commutation rules, we obtain the long-range equation for
this case, which relates the mean value of the operfates B;Bk to the mean

value ofwy. According to (10),
(b (B)biA) = (i Aby ). (11)

If the operatorA is chosen to commute Wilﬁﬁ andb, (11) can then be written
as:

By (B)BKA) = (b Aby ) = (biby A). (12)
From (9) and (12) we can obtain the long-range equation as
(k(expBWi) — DA) = (A). (13)

This yields the generalized Hartree equations by adding the scalar energy
to the operatowy. The Heisenberg equation of motion fﬂﬁ_’(t) becomes

dB:(T) a1 Rt - ot
= [H, b (r)] = (ex + Wi(z))by (7). (14)
The corresponding general solution is
By (7) = By (0) exp(fx + W), (15)
Repeating all the above manipulations, we finally obtain
(Aic(exp(Blex + W) — DA) = (A). (16)

3. CLOSED SET OF NONLINEAR INTEGRAL EQUATIONS
FOR A NEUTRAL BOSE SYSTEM

The total Hamiltonian describing the neutral many-bosonic system can be
written as the sum of two terms:

H = |:|o + Hy, (7)
whereH is the kinetic energy term,

Ho= / dr i (7) (_%w) b (); (18)
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¥(F) and U (7) are the field operatord) is Planck’s constanth(= h/2r =
Dirac’s constant)m is the bosonic mass; ard, is the interaction term:

A 1 N N I
Hi= 5/ drydi W (F) W (F)V (1 — F2) W (F2) V(1) (19)
V(1 — I'2) being the pairwise central potential that depends only on the modulus
of |F]_ — |72|
It is convenient to write the field operators as linear combinations of the
creation and annihilation operators:

W) = Wb (20)
R

br@) =Y vy, (21)
R

where the coefficientd;(F), \IJI:r () are the single-particle wavefunctions and the
sum is over the complete set of single-particle quantum numbers. In particular, the
indexk for spinless bosons merely denotes the linear momentum of the particle.
In a uniform homogeneous system, all physical properties must, of course,
be invariant under spatial translations. This suggests periodic boundary conditions
and single-particle wavefunctions that are plane waves.
We shall now rewrite (17) in the second-quantization representation:

H —Zﬁfﬁb +}ZV(k)” > (22)
whereV (k) is the Fourier transform of the pair potential defined as
P >, aA 1 A4 A
VW= [VOepk-ndr ho= Yhiche @

Q being the normalization volume of the system.

The single-particle energy for free bosons, incorporating the chemical poten-
tial, is

h?k?
o) = 5~ (24)

wu being the chemical potential: it is the energy required to remove (add) a particle
from (to) the system at constant volume. This is equivalent to the particle being in
a potential well with depth-u. Thus, the above Hamiltonian should be modified
to incorporateu:

A= Y ebiBet 5 3 VIKIAG (25)
k k
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We shall assume thqt we can write this Hamiltonian as a linear combination
of the local-field operatoEy and the number-of-patrticles operator:

H =" Edby b, (26)
K

where E, is to be found from the equation of motion for the opere&@rin the
Heisenberg picture, and from (25),

s+
e _ 1A, 5] = By (27)

First,
- s 2 1 Aot ot .
[A.B] = Euby = e(b + == > V(@)(Bgbi_q + gy r-q)-  (28)
2VQ 4

Second,
~ - o 1 Lo
Ex = [be, [H, By ]] = e(k) + S > Wik, G)fqg; (29)

q

W(k, §) = V(0) + V(K — §). (30)

The well-known mean-field approximation states that the local-field operator
can be replaced with its mean value; it assumes that the fluctuations in this operator
are negligible. In the SFA the square of the quadratic fluctuation operator can be
replaced with its mean value:

(AE)? = ((AEWD), (31)

whereA E = E, — (Ey) is the corresponding deviation of the mean-field operator
from its mean value. It follows that the local-field deviation operator has two
symmetric eigenvalues:

(AEW)? = (AE)?) = o, (32)

which, in fact, defines a splitting of the opera’mék produced by the quadratic
fluctuations.

In the SFA the local-field operat(ﬁk must commute with both the creation
(B;) and annihilation if) operators if our closed system of nonlinear integral
equations is to be obtained. From (29) we have found that this operator commutes
with the creation and annihilation operators if the potential in momentum space
vanishes when the relative momentum vanishes, thaVié £ 0) = 0]. This
condition is not valid in arbitrary neutral many-bosonic systems, such as figeid
where the potential has a maximum when the relative momentum vanishes and
decreases when the relative momentum increases. Therefore, we shall rewrite the
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Harr)iltonian so as to be consistent with the condition Batommutes witrf);
andby:
~2

A= 3 e@q + 2 Y V@hep-g + g V(O) (332)
el G#0
or
~ . 1 A N2
H=) e@fq+3 ) V(@hahq+ 55V0) (33b)
! G#0

The square of the total number-of-particles operator in (33a) has been replaced
with its mean value, where the total number of particles is very large. In this case
Exis

Ex = [b, [H,b]] = e() + é Y V(K- G)ig; (34)
Gtk
AEy = éZV(R—a)Aﬁq. (35)
gk

OperatorEy satisfies the following commutation rules:

[Ex.B]=0; [ExbBy]=0.

Using (16) and lettingsx — (Ex), Wx — AEy, we obtain the long-range
equation

(Ak(expB(Ex) + AE) — 1)A) = (A). (36)

If the operatorA is chosen to commute with, and if the fluctuations\ E, are
small compared to the mean value of the local-field operdEqy, then (36) can
be rewritten in the form

<A A
expB((Ex) + AEW) — 1
It is desirable to write the long-range equation (37) as linear in terms of
the fluctuations of the local-field operator; this could be done with the aid of the
identity

B(a+ bAEL) = no(k) + ni(k)AEy, (38)
with

mo(k) = 5 (B(a-+ by + B(a— b)) (39a)
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m(k) = Z—L(B(a + bg) — B(a — by, (39b)

which is correct for any smooth functid®(x). According to this identity, one can
write (37) in the form

(AA) = 1o(K)(A) + n1(K)(AEKA), (40)
where
1 1 1
k) == = = ; 41
ok) 2{eX|o(B(<Ek>+<ok))—1+ eXp(B(<Ek>—‘Pk))_1} (412)
1 1 1
k) = — ~ — - . (41b
ml) = 2o {exp(B«Ekmok»—l expcB(<Ek>—¢k»—1} (415)

From (40) it is possible to obtain the closed system of nonlinear integral
equations. Puttinds = 1 in this equation, and by virtue of the symmetry involved,
the mean value of the fluctuations vanisr(esék) = 0, sothatwe have the particle
distribution

(fie) = no(K). (42)

We can then rewrite the long-range equation (40) in terms of the deviations
of occupation-number operators, defined as

Afy = A — (A). (43)

Thus,
(ARA) = ni(K)(AEKA). (44)

At this stage it is possible to obtain a closed system of nonlinear integral
equations.

Putting in (44)A = Afg, we have the pair correlation functigifiy Afig)c,
the index t” denoting the true correlation& & q) involved:

K Lo
(ARAARg)c = "17() > VK - p)(AfyARg)

prk
(ARG = k Lo
= m(k)%v(k— g + ’“g(z ) Y V(K — p)(ARpARg)..

Pk
(45)

For aIIR—statesnl(k) is negative; this is because there is a relative sign between the
fluctuations in the number-of-particles operator and the fluctuations in the local-
field operator. In the equilibrium state the particles prefer to energetically stay in
the lowest-momentum state; so if the fluctuations in the local-field operator lead
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to an increase in the state energy, then the fluctuations in the number of particles
lead to a decrease in the number of particles in this state. Accordingly, we must
take the absolute value @f(k) in our calculations; otherwise we shall have the
wrong sign for the correlation functions.

From (45) we note that the correlation function depends on two terms. The
first, the direct term, depends on the density fluctuations of the number of particles
intheg-state and the fluctuations in the energy statthrough the parametei (k).
Through the direct term we see that the correlation function depends directly on
the exchange potential, which in turn depends on three parameters: the modulus of
k and ofg, and the angle between these two vectors. But the number of particles
in state|R> depends only on the moduluslafwhere all the directions are equally
likely. Therefore, the fluctuations in the number of particles also depend on the
modulus ofk. Then there is no physical reason for the corresponding correlation
function to depend on the relative direction betw&eandd. Accordingly, it is
quite feasible to take the average exchange potential over all possible orientations:

— o 1t .
V(k — C])EZ/lV(k—ﬁ])dcose

1 . " _ &
_ A V(r)rzdr/ Mdcos@ (46a)
2 Jo -1 |k—=dgjr
47 ) L sin((? + g2 — 2kq cosh)Y/?r)
=5 V(r)r dr f_ (K2 1 0% — 2kq cos0) L /7r dcosh.
(46b)

Integrating over the angle, we obtain the spherical Fourier-Bessel transform of the
potential,

V&9 = Ve =ar [ v O ar )

The second term in the correlation function represents the exchange term and can
be handled in a similar manner.
To determine the unknown valyéAfg)?) appearing in (45), we go back to
the identity (11). We cannot use (44) because the opefatoust commute with
b, andby. PuttingA = A in that identity, we obtain

(by (B)bqfq) = (Bqfiqby ). (48)
With the commutation relatiom, B;r] = B;L, this equation becomes

<B:(5)BqﬁQ> = <Bqﬁqﬁg> = (1+ 2Ag + AF). (49)
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Since the local-field operatdf, commutes with the creation and annihilation
operators, (48) assumes the form

(by (B)bghq) = (exp(8Eq)bg byfg). (50)
From (49) and (50), we fin¢h3):

- 1+2n
(3 = <W)q—1> a)(L+2(Ag)) + 21(a)(APRGAEg).  (51)

From this equation we can determine the quadratic fluctuations in the occupation
numbers:

((ARg)%) = (AG) — (Rg)%; (52)

(ARQ?) = {Ag) (L + (Aq)) + ’“(q)ZV( 0)(ARARGe.  (53)

Putting A = AE, in (44), we obtain
1 - P
m(gc = o D VK = P)(ARARp)c. (54)
p

We now have the closed system of nonlinear integral equations consisting
of (ék) (A, (AR, ¢ (AR Afg)c, gk. These nonlinear equations will be solved
numerically by Gaussian quadrature (Ali, 1997; Bisled@l, 1977; Burden and
Faires, 1993; Ghassit al, 1976).

To calculate the thermodynamic properties of the system, the grand partition
function Q should be derived. We start from the usual expression

Q = Tr(exp(-H)) = Zexp(—ﬁ > épﬁp)
Np p
=]D_ expBE,iy). (55)
P M

It is simplest to take the logarithms of both sides:

INQ = In(Tr[exp(=BH)]) = In[%exp(—ﬁ Z Epﬁp)}

b
= In[ [1D_exp-p Epﬁp)}
p M

= =) In[1 —exp(BE,)]. (56)
P
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Using identity (38), we have
InQ = > [ao(p) + qu(P)AE]. (57)
p

Taking into account the symmetry of the two eigenvalues of the opetegr we
finally get from (57)

INQ=-)"au(p); (58)
p

1 .
Go(p) = 5 In[(1 — exp(=A(Ep) — Bep)) (1 — expC-A(Ep) + Bep)l.  (59)

The mean internal energyd) is, then,

A 9InQ
or
U= (H) =Y (ApEp) =D ((Ep)(Rp) + 95m(p)). (60)
p p

From the grand partition function and the grand internal energy it is straight-
forward to evaluate all other thermodynamic properties.

4. CALCULATIONS

The above set of nonlinear integral equations has been solved numerically by
iteration for a realistic interhelium potential. Throughout our calculations a natural
system of units has been used, such that 1 = m, the conversion factor being
W — 12120048 KA,

For convenience, the central He—He potential can be expressed in the form

V(r) = Af(r), (61)

whereA is a factor determining the strength (amplitude) of the potentialfénd

is a “shape function” describing the overall shape of the potential (Ghassib, 1984).
For liquid“He, V(r) could be one of several highly-acclaimed realistic potentials:
FDD-1, MDD-2, S, B (Bishopet al,, 1977) and HFDHE?2 (Ali, 1997; Aziet al,,

1979). HFDHEZ2 seems to be the most reliable. Here, however, we have chosen
the FDD-1 potential of Frost and Musulin (Bruch and McGee, 1967, 1970) as our
archetype potential because it retains most of the desirable features of HFDHE2
but is simpler to handle.
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Although these potentials are well known, we now give the explicit forms of
FDD-1 and HFDHE?2 potentials for completeness and for reference purposes:

(a) FDD-1:
I'm r
—e[1+c(1— —)] exp[c(l— —ﬂ r<rs
r I'm
C C
_<r_66 + r_88>’ r=rs

e=1254K; c=801 rs=35A; ry=298A; Cg=102138KAS;
Ce = 27671.4 KA 8,
(b) HFDHEZ:

V(r) =

V(r) = eV*(x),

Ce Cg C
V*(x) = Aexp(~ax) — {X—: + x_88 + X—ig}F(x);

oo () e

x>D

x=.; D=124 A=0554x10F; «=1335 C¢=1373 Cg=
0.425; Cy10=0.178; ¢ =108K.

The chemical potential of the system also plays a crucial role in the formalism.
From statistical mechanics the number of particles of each single-particlqﬂ.«;tate

for the noninteracting system is given by
_ 1
~ expBe(k)) — 1’

whereg(K) is the kinetic energy of the system incorporating the chemical potential.
This expression is meaningful only if

(i) (62)

hk?
e(k) = om u> 0; (63)

otherwise the mean occupation number of particles will be negative. To satisfy (63)
at all, the chemical potential must be less than the minimum value of the kinetic
energy. But the kinetic energy might vanish; so that the chemical potential must
always vanish or be negative.

According to our formalism, the number of particles in each single-particle
state for interacting systems is defined as

1 1 !
M =3 {exp(B((Ek> + o)) —1 " expB((Ex) — ¢x)) — 1} .

(64)
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This equation is meaningful only if
(Ex) £ ¢k = 0. (65)

Based on this condition, the chemical potential is
h2 2 1 oo
— —mlr( 5;V(p—k)(np)i¢k>. (66)
p

The minus sign arises here from physical considerations; the chemical potential
for neutral many-bosonic systems is negative. Atlall gk is positive. Then (66)
becomes

h2 2 1 - o
- —mur( F 2V -RA —<pk>. (67)
pk

This resultis valid only at low temperatur@s < T,, where if we add a boson
to the system it can go to the lowest-momentum state.

5. RESULTS AND DISCUSSION
5.1. The Weakly Interacting System: Liquid “He in Vycor Glass

Forafixedf (r)in (61), itturns out that our closed system of integral equations
converges only whe\ < 1 x 10~4. This means that the present approximation
is valid for dilute systems only, such as liguide in Vycor glass.

With A = 1074, then, the following quantities have been computed:

(i) the relative fluctuation of stat); that is, ‘ék>,

(ii) the fluctuations of the local-field operator,

(iii) %.

To examine the dependence of these quantities on temperature, they have been
computed for two temperatureg; = 0.5 KandT, = 2 K.

Figure 1 shows the relative fluctuations at temperatlitesdT,. The basic
features are clear: these have maximum vale€s%5 atT, and~0.60 atT,) at the
lowest-momentum state and vanish asymptotically at higher states. Further, they
decrease rapidly &, whereas al, they extend to higher states. Thus, the higher
orders of these fluctuations become more important as the temperature increases.

Figures 2 and 3 show the fluctuations of the local-field operator at tempera-
turesT; and Ty, respectively. Again, the corresponding maximum values occur at
the lowest-momentum stateQ.35x 102 A2 atT; and 0.24x 101 A2 atT,)
and vanish at higher states. _

How can we explain these results? From (54) the fluctuations in ftate
depend on the spherical Fourier-Bessel transform of the potential, which decreases
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0.40

0.20

0.00 0.40 0.80 1.20

Fig. 1. The relative fluctuationsg(k/(Ex)) for the FDD-1 potential with strength factor
A =10"* at temperature¥; = 0.5 K (0), T» = 2 K (A), and with strength factoA =
1076 at temperatur@, = 2 K (e), versus the relative momenturk (

whenk increases. This can be seen even more clearly from (47). Therefore, the
fluctuations decrease kincreases.

Further, Figs. 1-3 show that, as the temperature increases, the relative fluctua-
tions and the fluctuations increase and extend to higher states. This is not surprising
since, as the temperature increases, more and more bosons are depleted from the
lowest-momentum state to higher states.

This can be deduced at once from Fig. 4: the width of the distribution of the
number of bosons in the low-lying excited states relative to the first excited state
increases with temperature. Now, the interaction term of the local-field operator
in state|k) depends on the interaction between this state and the other occupied
states. As the temperature increases, the number of occupied states increases; so
that the interaction term in the local-field operator also increases. As a result, the
fluctuations of the local-field operator will increase. Alternatively, from (54), the
fluctuations in the local-field operator in staite depend on the correlation func-
tion between the fluctuations in the number of bosons in this state and those
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0.36

0.34
1072
-2
or (A7)
0.32
0.30 : ' : ' : ' :
0.00 0.40 0.80 1.20 1.60
k(A

Fig. 2. The fluctuationsy) for the FDD-1 potential with strength factdr = 10~ at temperature
T, = 0.5 K versus the relative momenturkj

corresponding to the other occupied states. As the temperature increases, more
states become occupied; so that the fluctuations in the local-field operator of state
k) increase.

In passing, it is noted that the fluctuations at [0\{Fig. 2) are characterized
by adip around 0.4A~1. This may be attributed to “two-fluidity” or two different
excitations in the system. At high(>2 K) thedip disappears (Fig. 3).

Finally, to explore the effect of the strength factor on the relative fluctua-
tions and the distribution of particles, these quantities have been computed when
A=10"%andT = T,. The results are shown in Figs. 1 and 4. It is clear from
Fig. 1 that the relative fluctuations have a maximum vaki@.8) at the lowest-
momentum state, which is less than the corresponding value in the previous
case. They also decrease faster than in that case. The physical implication is
that the strength of the potential plays a crucial role here, as expected. Like-
wise, Fig. 4 shows that the width of the distribution of the depleted bosons in
the low-lying excited states shrinks as compared to the previous cases—again as
expected.
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0.24

0,22
1071
-2
o (A7)
0.20
0.18 ' : ' | : ' :
0.00 0.50 1.00 1.50 2.00
k(A

Fig. 3. The fluctuationsdy) for the FDD-1 potential with strength factér = 10~* at temperature
T, = 2 K versus the relative momenturi

A major aim of any statistical-mechanical or many-body theory is to de-
rive the thermodynamic properties of the system under examination. This aim
is achieved here within the SFA for the FDD-1 potential with strength factor
A = 10~*. The underlying physical system is the dilute weakly interacting “liquid”
“He, which can be realized in practice in the form of ligdide in Vycor glass
(Crooker, 1984; Reppgt al,, 1984). The following results are therefore offered
here for experimentalists as definite predictions for the thermodynamic properties
of this system.

The starting point is the grand partition functi@hderived in (58). From
(60) the grand internal energy (the internal energy incorporating the chemical
potential) per unit volume can be computed numerically for the preceding system.
The corresponding plot is shown in Fig. 5 as a function of temperature.

The pressure is given by (Huang, 1987; Pathria, 1992)

|
P:@T%?. (68)
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1.20

0.80

<ﬁ1> 0.40

0.00 . d
0.00 0.40 0.80 1.20

k(A™H

Fig. 4. Distribution of the number of particles in the depletion states relative to the first depletion
state((fix) / (A1), for the FDD-1 potential with strength factek = 10~ at temperatured; =

0.5K (0), T2 = 2 K (A), and with strength factoh = 10~ at temperatur@, = 2 K (e), versus the
relative momentumk).

This is shown in Fig. 6 as a function of temperature; it represents the equation of
state of the system.

Other thermodynamic properties can readily be obtained in terms of the pres-
sure and the grand internal energy. From the first law of thermodynamics we
have:

U=-PQ+TS (69)

whereU here represents the grand internal energy—consistent with (58). From
(68) and (69) we have for the entropy of the system

S=¥+@mq (70)

The entropy per unit volume is plotted in Fig. 7 as a function of temperature.
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Fig. 5. The grand mean energy per unit volun&/Q) for liquid “He in Vycor glass as a function of
temperatureT).

Finally, the specific heat capacity of the system at constant volume is given
by the usual definition:

cr(9-(), om

This quantity per unit volume is presented in Fig. 8 as a function of temperature.
The functional dependence drof the above thermodynamic quantities can
be obtained by straightforward fitting procedures. The results are

1. the grand internal enerdy oc T245,
2. the pressur® oc T24,

3. the entropys oc T+47,

4. the specific heat capacify, o T143.

For the ideal system (Pathria, 1992) bathand P o« T2°, whereasS and
Cy o« T15. Thus, the thermodynamic properties for ligdide in Vycor glass
have almost the same temperature dependence as for the ideal system. The small
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Fig. 6. The pressureR) for liquid “He in Vycor glass as a function of temperatufd.(

deviation of theT-exponent arises from the weak interaction oftHe system in
Vycor glass, as expected.

5.2. The Strongly Interacting System: Liquid *He

In the preceding calculations the fluctuations of the local-field operator have
been found to increase as the strength of the potential increases. Thus, for strongly
interacting systems, the fluctuations cannot be cosidered small compared to the
mean value of the local-field operator. We have therefore to start again from (36)
to derive the closed system of nonlinear integral equations valid for such systems.

Equation (36) is first rewritten:

(A(eXpBUEW) + AEY) — DA) = (A). (72)

Next, (38) is used to write exf(A E,) as linear in terms of the fluctuations of the
local-field operator. Equation (72) then becomes

(Ak(Go(K) + S () AEK — 1)A) = (A), (73)
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Fig. 7. The entropy per unit volumeS() for liquid “He in Vycor glass as a function of
temperatureT).
where
Zo(K) = exp(B(Ex)) cosh(Bex) ; (74a)
sinh(B¢x)

(k) = exp(B(Ex)) (74b)

Pk
In (73) it is more convenient to express the operatan terms of its mean value
and its fluctuations:

Ak = (Ak) — Af. (75)

As already stressed, if the local-field operator is written as its mean pélse

the fluctuation as has indeed been done, the number-of-particles operator must be
written as its mean valuminusthe fluctuation. The underling physical meaning is
that, if the fluctuation in the local-field operator leads to an increase in the energy of
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Fig. 8. The specific heat capacity per unit volun@ (2) for liquid “He in Vycor glass as a function of
temperatureT).

the stath), then the number of particles in this state must decrease. Accordingly,
(73) becomes

P A 1 Ao s s 4
(AfgA) = ((nk) T -1 1) (A)+ oK) — 1 1(AEA)
g1(k) s AR R
— —{O(I() — l(AnkA ExA). (76)

Relative to (40), (76) has two additional terms: the first term, which depends
on the mean value of the operatr and the last, which depends on the triplet
correlations relating the fluctuation in the number of particles to that in the local-
field operator and to the operatér From (76) puttingA =1, we have

1+ a(k)(ARAE)

() = o0 1 (77)
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Again, puttingA = AEy, we obtain

(AﬁkAék) = M 2,

oK) - (78)
From (77) and (78),

Zo(k) —
(co(K) — 1)? — ¢2(K)E

To close our system of nonlinear integral equationg), A E, ) is determined
from (35):

(A) = (79)

(ARKAEY) = ZV(p K) (AR AR p)c. (80)
P

The pair correlation functiofAfx Ang). is found by putting in (76)A = Afg,
whereq # k:

(AR ARG) = &mki(AﬁqAék) £2(K) (AﬁkAékAﬁq>. (81)

So(k) — Zo(k) — 1
The last term on the right hand side of this equation represents the three-body
correlation function whose contribution is assumed to be small compared to that
of the pair correlation function. Therefore, the last term in (81) can be neglected.
It follows that

IR g1(K) (i) AfgAfp)

(g ~ 200 mZ 00 ({Sihny, ) @2
_ Gk ()
" o) -1

To calculate((Afg)?) we must go back to (11); we cannot use (76) siAda this

equation must commute with both creation and annihilation operators. From (11)
we find

f (k, Q)c. (82b)

(1420 + ) = (A2(0(a) + £2(@)AE,))- (83)

Substitutingfi? = (Ag)* + (AAg)? — 2(Aq) Afq in (83) and performing simple
mathematical manipulations, we have
1
((ARY?) = (Ag)? + ———. (84)
K T go(a) —
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Fig. 9. The grand mean energy per unit volumé/Q) for liquid “He as a function of tempera-

ture (T).

From (78) and (80) we can calculate the fluctuation in the local-field operator:

Gl , 1
ok —1% T @

To avoid the singularity at higher states, it is more convenient to rewrite (85a) in
the form

> V(P - k)(ARAR),. (85a)
p

=2 Y V(B -Rk P (85b)
p

Finally, the chemical potential should be determined. Physically, the number
of particles in each single-particle state (77) should be positive. This condition is
satisfied if

o(k) > 1. (86)
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Fig. 10. The pressureR) for liquid “He as a function of temperaturg),

In addition, sinceu for bosonic systems should be negative, we have

2.2
w=— mln[hz—k + = ZV(p K) (Ap) + ks T In{ C05h6¢k)}:| (87)

Our new set of nonlinear integral equations can be solved numerically. To
compute the thermodynamic properties, the grand partition function should be
derived. This can be achieved by repeating the same mathematical manipulations
of (55) up to (58). To complete the thermodynamic description of the system the
grand mean energy of the system is needed. This is given by

U=(H) = Z (AEx) = Z( — (ARCAEY)), (88)
K
or

_ o\ ¢1(K) (A
U= ; (<nk><Ek> o = <p2> (89)
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Fig. 11. The entropy per unit volumes(2) for liquid “He as a function of temperaturé),

Figures 9-12 show the plots of the grand mean energy per unit volume,
the pressure, the entropy per unit volume, and the specific heat capacity per unit
volume, respectively, as functions of temperature up to 0.15 K. At higher temper-
atures the closed system of nonlinear integral equations diverges by virtue of the
increasing fluctuations of the local-field operator.

By fitting the above thermodynamic data, we find that

1. the grand internal enerdy o T215,
2. the pressur® o T2,
3. the entropys o« T2,
4. the specific heat capaci€y, o T4,

Comparing these to the corresponding results obtained for litiidin Vycor

glass, we conclude that the temperature dependence of the above thermody-
namic properties decreases when the strength of the interaction potential in-
creases.
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Fig. 12. The specific heat capacity per unit volun@, () for liquid “He as a function of tempera-

ture (T).

In passing, it is gratifying to note that the above results§andC,, when
extrapolated td = 0.2 K, agree very well with the available experimental results
(Bendtet al,, 1959).

6. CONCLUSIONS

Neutral many-bosonic systems have been studied for the first time within
the framework of the SFA, which hinges on the replacement otfuareof the
local-field operator with its mean value. To satisfy the basic condition that the
local-field operator must commute with both the annihilation and creation opera-
tors, it turns out that the interparticle interaction in momentum space must vanish
when the relative momentum vanishes. This, in turn, has necessitated rewriting the
Hamiltonian so as to conform with this condition.

An algorithmic version has been developed, and extensive calculations have
been undertaken for the relative fluctuations, fluctuations, distribution of particles,



Liquid Helium-4 in the SFA 1059

and thermodynamic properties of the dilute, weakly interacting li¢jdilin VVycor
glass. The results should present a challenge to experimentalists for vindication and
verification. In addition, the thermodynamic properties of the strongly interacting
liquid “He have been calculated, albeit for low temperatures oal/15 K).

The basic achievements of this paper are as follows:

1. The full derivation of the SFA for the first time for neutral many-bosonic
systems.

2. The development of the corresponding algorithmic version for solving the
closed system of nonlinear integral equations involved.

3. The prediction of the thermodynamic properties of the weakly interacting
liquid “He in Vycor glass.

4. The calculation of the thermodynamic properties of the strongly interacting
liquid *He at low temperatures<Q.15 K).

Several possible extensions and generalizations are implied by this work.

The first is the reformulation of the present framework for higher orders of
fluctuations. The resulting theory should be more suitable for strongly interacting
systems at arbitrary temperatures. The second is to take into account the triplet
correlation function in deriving the closed system of nonlinear integral equations.
The third is to study the thermohydrodynamic (or hydrothermodynamic) properties
of neutral many-bosonic systems based on the present formulation of the SFA. The
fourthis the application of the SFA to neutral weakly and strongly interacting many-
fermionic systems. The charged Fermi system (the electronic fluid) has already
been studied within the SFA scheme (Mash’al, 2000). The fifth problem is the
reformulation of the present framework for confined bosonic as well as fermionic
systems.

In all these problems helpful hints and guidelines could be furnished by
previous published attempts within other formulations.
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